Weverse

MujyKun

Jun 27, 2022

1 WeverseClient

2 Clients

3 Models

3.11 Announcement
4 Model Creation
5 Exceptions

5.2 Page Not Found

5.3 Being Rate Limited
6 Get Account Token
7 Asynchronous Usage
8 Synchronous Usage
9 Indices and tables
Python Module Index
Index

2.1 WeverseClientSync
2.2 WeverseClientAsync

3.1 Community
3.2 Notification
33 Photo
34 Video e
3.5 VideoStream
3.6 Artist ...
37 Comment it
38 Post. e
39 Tab
310 Media e

51 InvalidToken

CONTENTS:

35

39

........................... 39
........................... 39
.. 39

41

43

45

47

49

51

CHAPTER
ONE

WEVERSECLIENT

class Weverse.WeverseClient (**kwargs)
Abstract & Parent Client for connecting to Weverse and creating the internal cache.

Do not create an object directly from this class. Instead, create a Weverse. lWeverseClientSync or Weverse.
WeverseClientAsync object since those are concrete.

Parameters
» verbose (bool) — Whether to print out verbose messages.
» web_session — An aiohttp or requests client session.

e authorization (str) — The account token to connect to the Weverse API. In order to find
your token, please refer to Get Account Token

e username (str) — The email or username associated with the account.
» password (str) — The password associated with the account.

* hook — A passed in method that will be called every time there is a new notification. This
method must take in a list of models.Notification objects.

verbose
Whether to print out verbose messages.
Type
bool
web_session

An aiohttp or requests client session.

user_notifications
Most recent notifications of the account connected.
Type
list
cache_loaded
Whether the Internal Weverse Cache is fully loaded. This will change for a split moment when grabbing a

new post.

Type
bool

user_endpoint

User info endpoint.

Weverse

Type

str

all_posts
All posts in cache where the Post ID is the key and the value is the Post Object
Type
dict(Post)
all_artists
All artists in cache where the Artist ID is the key and the value is the Artist Object

Type
dict(Artist)

all_comments
All comments in cache where the Comment ID is the key and the value is the Comment Object

Type

dict(Comment)

all_notifications
All notifications in cache where the Notification ID is the key and the value is the Notification Object
Type
dict(Notification)
all_photos
All photos in cache where the Photo ID is the key and the value is the Photo Object

Type
dict(Photo)

all_communities
All communities in cache where the Community ID is the key and the value is the Community Object

Type
dict(Community)

all_media
All media in cache where the Media ID is the key and the value is the Media Object
Type
dict(Media)
all_tabs
All tabs in cache where the Tab ID is the key and the value is the Tab Object

Type
dict(7ab)

all_videos
All videos in cache where the Video URL is the key and the value is the Video Object
Type
dict(Video)
all_announcements

All announcements/notices in cache where the Announcement ID is the key and the value is the Announce-
ment Object

2 Chapter 1. WeverseClient

Weverse

Type

dict(Announcement)

check_status (status, url) — bool
Confirm the status of a URL

Parameters
¢ status — Status code of url connection
¢ url — Link that we connected to.

Returns
True if the connection was a success.

Raises
Invalid Token if there was an invalid token.

static determine_notification_type (notification: Union[Notification, str]) — str

Determine the post type based on the notification body or the Notification object itself.

Since notifications do not differentiate between Posts and Comments, this is for that purpose.

Parameters
notification — The message body of the notification or the notification itself.

Returns
A string with either “comment”, “media”, “post”, or “announcement’.

get_announcement_by_id(announcement_id) — Optional[Announcement]
Get Announcement by the ID

Parameters
announcement_id — Media ID

Returns
Optional[Announcement]

get_artist_by_id(artist_id) — Optional[Artist]
Get artist by their ID.

Parameters
artist_id — The artist’s ID

Returns
Optional[Artist]

get_comment_by_id(comment_id) — Optional[Comment]
Get a comment by the ID :param comment_id: Comment ID :returns: Optional[Comment]

get_community_by_id(community_id) — Optional[Community]
Get a community by the ID.

Parameters
community_id — Community ID

Returns
Optional[Community]

get_media_by_id(media_id) — Optional[Media)
Get Media by the ID

Weverse

Parameters
media_id — Media ID

Returns
Optional[Media]

get_new_notifications() — List[Notification]
Will get the new notifications from the last notification check.
Should only be used after check_new_user_notifications OR update_cache_from_notification.

Returns
List[Notification]

get_notification_by_id(notification_id) — Optional[Notification)
Get a notification by the ID

Parameters
notification_id — Notification ID

Returns
Optional[Notification]

get_photo_by_id(photo_id) — Optional[Photo]
Get a photo by the ID

Parameters
photo_id — Photo ID

Returns
Optional[Photo]

get_post_by_id(post_id) — Optional[Post]
Get a post by the ID

Parameters
post_id — Post ID

Returns
Optional[Post]

get_tab_by_id(tab_id) — Optional[7ab]
Get tab by their ID.

Parameters
tab_id — The tab ID

Returns
Optional[7ab]

get_video_by_url (video_url) — Optional[Video]
Get a video by the direct URL.

Parameters
video_url — URL of the video

Returns
Optional[Video]

static process_community_artists_and_tabs(community, response_text_as_dict)
Process the community artists and tabs and add them to their respective communities.

Parameters

4 Chapter 1. WeverseClient

Weverse

¢ community — Community object
* response_text_as_dict — Response text of connection to endpoint but as a dict.

property public_weverse_key: str
Hard-coded weverse key

stop(O
Stop the hook loop.

Weverse

6 Chapter 1. WeverseClient

CHAPTER
TWO

CLIENTS

2.1 WeverseClientSync

class Weverse.WeverseClientSync(**kwargs)
Synchronous Weverse Client that Inherits from WeverseClient.

Parameters
kwargs — Same as WeverseClient.

Attributes are the same as WeverseClient.

check_new_user_notifications()

Checks if there is a new user notification, updates the cache, and returns if there was.

Returns
(bool) Whether there is a new notification.

This endpoint has been acting a bit off and not producing accurate results. It would be recommended to
instantly get new notifications with update_cache_from_notification instead.

check_token_works()

Check if a token is invalid.

Returns
(bool) True if the token works.

create_communities()
Get and Create the communities the logged in user has access to.

Create_community_artists_and_tabs()
Create the community artists and tabs and add them to their respective communities.

create_media(community: Community)
Paginate through a community’s media and add it to object cache.

Parameters
community — Community the posts exist under.

create_post (community: Community, post_id) — Post

Create a post and update the cache with it. This is meant for an individual post.
Parameters
e community — Community the post was created under.

e post_id — The id of the post we are needing to fetch.

Weverse

create_posts (community: Community, next_page_id: int = None)

Paginate through a community’s posts and add it to object cache.
Parameters
e community — Community the posts exist under.
* next_page_id ([OPTIONAL]J) — Next Page ID (Weverse paginates posts).

fetch_announcement (community_id: int, announcement_id: int) — Optional[Announcement]

Receive announcement object based on announcement id.
Parameters
e community_id — The ID of the community the media belongs to.
e announcement_id — The ID of the announcement to fetch.

Returns
Announcement or NoneType

fetch_artist_comments (community_id, post_id)
Fetches the artist comments on a post.

Parameters
e community_id — Community ID the post is on.
e post_id — Post ID to fetch the artist comments of.

Returns
List[Comment]

fetch_comment_body (community_id, comment_id)
Fetches a comment from its ID.

Parameters
e community_id — The ID of the community the comment belongs to.
» comment_id — The ID of the comment to fetch.

Returns
(str) Body of the comment.

fetch_media(community_id, media_id)

Receive media object based on media id.
Parameters
e community_id — The ID of the community the media belongs to.
* media_id — The ID of the media to fetch.

Returns
Media or NoneType

get_user_notifications()

Get a list of updated user notification objects.

Returns
List[Notification]

8 Chapter 2

. Clients

Weverse

start (create_old_posts=False, create_notifications=True, create_media=False)

Creates internal cache.
This is the main process that should be run.
Parameters
e create_old_posts — (bool) Whether to create cache for old posts.
* create_notifications — (bool) Whether to create/update cache for old notifications.
¢ create_media - (bool) Whether to create/update cache for old media.

Raises
Weverse.error.InvalidToken If the token was invalid.

Raises
Weverse.error.BeingRateLimited If the client is being rate-limited.

Raises
Weverse.error.LoginFailed Login process had failed.

Raises
Weverse.error.InvalidCredentials If the user credentials were invalid or not provided.

translate(post_or_comment_id, is_post=False, is_comment=False, p_obj=None, community_id=None)

Translates a post or comment, must set post or comment to True.
Parameters
e post_or_comment_id — A post or comment ID.
e is_post ([OPTIONAL]) — If we passed in a post.
¢ is_comment ([OPTIONAL]) - If we passed in a comment
e p_obj ([OPTIONAL]) — The object we are looking to translate
o community_id ([OPTIONAL]) — The community id the post/comment was made under.

Returns
(str) Translated message or NoneType

update_cache_from_notification() — List[Notification]
Grab a new post based from new notifications and add it to cache.

Will also return the new notifications found.

Returns
List{models.Notification]

2.2 WeverseClientAsync

class Weverse.WeverseClientAsync (loop=<_UnixSelectorEventLoop running=False closed=False
debug=False>, **kwargs)

Asynchronous Weverse Client that Inherits from WeverseClient.
Parameters
* loop — Asyncio Event Loop

e kwargs — Same as WeverseClient.

2.2. WeverseClientAsync 9

Weverse

loop
Asyncio Event Loop

Attributes are the same as :ref: WeverseClient'.

async check_new_user_notifications() — bool
Checks if there is a new user notification, updates the cache, and returns if there was.
This is a coroutine and must be awaited.

Returns
(bool) Whether there is a new notification.

This endpoint has been acting a bit off and not producing accurate results. It would be recommended to
instantly get new notifications with update_cache_from_notification instead.

async check_token_works() — bool
Check if a token is invalid.

This is a coroutine and must be awaited.

Returns
(bool) True if the token works.

property cookies: Optional[dict]

Get the user’s cookies in order to access media.

async create_communities()

Get and Create the communities the logged in user has access to.
This is a coroutine and must be awaited.

async create_community_artists_and_tabs (specific_community_ids: List[int] = None)
Create the community artists and tabs and add them to their respective communities.

Parameters
specific_community_ids — List[int] Will only do this list of community ids from the al-
ready existing communities.

This is a coroutine and must be awaited.

async create_media(community: Community)
Paginate through a community’s media and add it to object cache.

Parameters
community — Community the posts exist under.

async create_post(community: Community, post_id) — Post
Create a post and update the cache with it. This is meant for an individual post.

This is a coroutine and must be awaited.
Parameters
e community — Community the post was created under.
e post_id — The id of the post we are needing to fetch.

async create_posts(community: Community, next_page_id: int = None)
Paginate through a community’s posts and add it to object cache.

This is a coroutine and must be awaited.

Parameters

10 Chapter 2. Clients

Weverse

o community — Community the posts exist under.
* next_page_id ([OPTIONAL J) — Next Page ID (Weverse paginates posts).

async download_video_stream(video_stream_obj: VideoStream, output_file_path)
Download a video stream to a local folder.

Parameters
¢ video_stream_obj (VideoStream) —
e output_file_path (str) — Full file path with file extension.

Return type
Returns False if no community id is found with the VideoStream object.

async fetch_announcement (community_id: int, announcement_id: int) — Optional[Announcement]

Receive announcement object based on announcement id.
This is a coroutine and must be awaited.
Parameters
e community_id — The ID of the community the media belongs to.
¢ announcement_id — The ID of the announcement to fetch.

Returns
Announcement or NoneType

async fetch_artist_comments (community_id, post_id)
Fetches the artist comments on a post.

This is a coroutine and must be awaited.
Parameters
e community_id — Community ID the post is on.
e post_id — Post ID to fetch the artist comments of.

Returns
List[Comment]

async fetch_comment_body (community_id, comment_id) — str

Fetches a comment from its ID.
This is a coroutine and must be awaited.
Parameters
e community_id — The ID of the community the comment belongs to.
e comment_id — The ID of the comment to fetch.

Returns
(str) Body of the comment.

async fetch_media(community_id, media_id) — Optional[Media]
Receive media object based on media id.

This is a coroutine and must be awaited.
Parameters

e community_id — The ID of the community the media belongs to.

2.2,

WeverseClientAsync 11

Weverse

e media_id — The ID of the media to fetch.

Returns
Media or NoneType

async follow_all_communities()

Follow all communities on Weverse

async follow_community (community_id: Union[int, str], attempts: int = 0)

Follow a community
Parameters
e community_id — Union[int, str] The community ID to follow.
* attempts — int The number of attempts for choosing a nickname after error.
async get_all_community_ids() — List[int]
Get all the communities on Weverse.

Returns
List[int] A list of community ids
async get_cookies (video_url_without_drm_type) — Optional[dict]
Get the user’s cookies in order to access media.
Parameters

video_url_without_drm_type - EX: https://weversewebapi.weverse.io/wapi/v1/
communities/2/videos/4093

Returns
Optional[dict] A dictionary containing a signed cookie.

async get_user_notifications()
Get a list of updated user notification objects.

This is a coroutine and must be awaited.

Returns
List[Notification]
async run_blocking_code (funcs, *args, **kwargs) — list

Run blocking code safely in a new thread. DO NOT pass in an asynchronous function. If an asynchronous
function has blocking code, the event loop will also block. There were several attempts made to make it
compatible with asynchronous functions, but it was a headache to work with.

Parameters

 funcs - The blocking function that needs to be called. May also pass in a list of functions
with the Oth index as the callable function, the 1st index as the args for that function, and
the 2nd index as the kwargs for that function.

» args — The args to pass into the blocking function.
» kwargs — The keyword args to pass into the blocking function.

Returns
List of results in no particular order. Make sure the output can be managed with no specific
order.

12 Chapter 2. Clients

https://weversewebapi.weverse.io/wapi/v1/communities/2/videos/4093
https://weversewebapi.weverse.io/wapi/v1/communities/2/videos/4093

Weverse

async start(create_old_posts=False, create_notifications=True, create_media=False,
follow_new_communities=True)

Creates internal cache.
This is the main process that should be run.
This is a coroutine and must be awaited.
Parameters
* create_old_posts — (bool) Whether to create cache for old posts.
¢ create_notifications - (bool) Whether to create/update cache for old notifications.
¢ create_media - (bool) Whether to create/update cache for old media.

* follow_new_communities — bool Check for new communities and automatically follow
them.

Raises
Weverse.error.InvalidToken If the token was invalid.

Raises
Weverse.error.BeingRateLimited If the client is being rate-limited.

Raises
Weverse.error.LoginFailed Login process had failed.

Raises
asyncio.exceptions.TimeoutError Waited too long for a login.

Raises
Weverse.error.InvalidCredentials If the user credentials were invalid or not provided.

async translate(post_or_comment_id, is_post=False, is_comment=False, p_obj=None,
community_id=None)

Translates a post or comment, must set post or comment to True.
This is a coroutine and must be awaited.
Parameters
¢ post_or_comment_id — A post or comment ID.
e is_post ([OPTIONAL]) - If we passed in a post.
e is_comment ([OPTIONAL]) — If we passed in a comment
e p_obj ([OPTIONAL]) — The object we are looking to translate
e community_id ([OPTIONAL J) — The community id the post/comment was made under.

Returns
(str) Translated message or NoneType

async update_cache_from_notification() — List[Notification]

Grab a new post based from new notifications and add it to cache.
Will also return the new notifications found.
This is a coroutine and must be awaited.

Returns
List[models.Notification]

2.2,

WeverseClientAsync 13

Weverse

14 Chapter 2. Clients

CHAPTER
THREE

MODELS

3.1 Community

class Weverse.models.Community (**kwargs)
A Community object that represents a Weverse Community.

It is not suggested to create a Community manually, but rather through the following method: Weverse.
objects.create_community_objects

The information retrieved on a Community is directly from the Weverse API and altered to fit this class.
X ==
Checks if two Communities have the same ID.

x =y

Checks if two Communities do not have the same ID.

str(x)

Returns the Community’s name.

Parameters
* id (int) — The Community ID.
* name (str) — The Community Name.
 description (str) — Description of the Community.
* member_count (int) — Amount of members in the community.
* home_banner (str) — Direct Image URL to the home banner.
* icon (str) — Direct Image URL to the Icon.
* Banner (str) — Direct Image URL to the Banner.
e full_name (str) — Full Name of the Community.
» fc_member (bool) — If a special membership is required to join.
» show_member_count (bool) — If the member count is visible.
id
The Community ID.
Type

int

15

Weverse

name

The Community Name.

Type

str

description
Description of the Community.

Type
str

member_count

Amount of members in the community.

Type

int

home_banner

Direct Image URL to the home banner.

Type
str

icon
Direct Image URL to the Icon.
Type

str
Banner

Direct Image URL to the Banner.

Type
str

full_name
Full Name of the Community.

Type

str

fc_member

If a special membership is required to join.

Type
bool

show_member_count

If the member count is visible.

Type
bool

artists

List of artists the community has.

Type
List[Artist]

16

Chapter 3. Models

Weverse

tabs

The Tabs the community has.

Type

List[Tab]

3.2 Notification

class Weverse.models.Notification(**kwargs)

A Media object that represents a Weverse Media Post.

It is not suggested to create a Notification object manually, but rather through the following method: Weverse.
objects.create_notification_objects

The information retrieved on a Notification is directly from the Weverse API and altered to fit this class.

X ==Yy

Checks if two Notifications have the same ID.

x l=y

Checks if two Notifications do not have the same ID.

Parameters

id

id (int) — The id of the notification.

message (str) — The message of the notification.

bold_element (str)— The bolded element in the notification.

community_id (int) — The community id associated with the notification.
community_name (str)— The community name associated with the notification.
contents_type (str) — The type of post it is.

contents_id (int) — The id of the content post.

notified_at — The time the notification was triggered.

icon_image_url (str) — Icon image url of the notification.
thumbnail_image_url (str)— Thumbnail url of the notification.

artist_id (int) — The ID of the Artist that released the content.
is_membership_content (bool) — If the content is exclusive to members.
is_web_only (bool) — Whether the notification is only available directly on the website.

platform (str) — The platform of the notification.

The id of the notification.

Type

int

3.2. Notification

17

Weverse

message

The message of the notification.

Type
str

bold_element
The bolded element in the notification.

Type

str

community_id

The community id associated with the notification.

Type

int

community_name

The community name associated with the notification.

Type

str

contents_type
The type of post it is.
Type
str
contents_id
The id of the content post.
Type
int
notified_at
The time the notification was triggered.
icon_image_url
Icon image url of the notification.

Type
str

thumbnail _image_url
Thumbnail url of the notification.

Type

str
artist_id
The ID of the Artist that released the content.
Type
int
is_membership_content
If the content is exclusive to members.

Type
bool

18

Chapter 3. Models

Weverse

is_web_only

Whether the notification is only available directly on the website.

Type
bool

platform
The platform of the notification.

Type
str

3.3 Photo

class Weverse.models.Photo(**kwargs)

A Photo object that represents a Weverse Photo that belongs to media or a post.

It is not suggested to create a Photo manually, but rather through the following method: Weverse.objects.
create_photo_objects

The information retrieved on a Photo is directly from the Weverse API and altered to fit this class.

X ==
Checks if two Photo objects have the same ID.
X l=y
Checks if two Photo objects do not have the same ID.
str(x)
Returns the file name.
Parameters
* id (int) — The ID of the photo.
* content_index (int) — Index the photo is in from a bundle of photos.
e thumbnail_img_url (str) — The thumbnail image link.
* thumbnail_img_width (str)— The original image width.
e thumbnail_img_height (str) — The thumbnail image height.
e original_img_url (str)— The original image link.
* original_img_width (str) — The original image width.
» original_img_height (str)— The original image height.
o file_name (str) — File name of the photo.
id
The ID of the photo.
Type
int

3.3. Photo 19

Weverse

media_id
The media ID of the photo (if there is one).

Type

Optional[int]

content_index

Index the photo is in from a bundle of photos.

Type
int
thumbnail_img_url
The thumbnail image link.

Type

str
thumbnail_img_width
The original image width.

Type
str

thumbnail_img_height
The thumbnail image height.
Type

str
original_img_url
The original image link.

Type
str

original_img_width
The original image width.

Type

str
original_img_height
The original image height.
Type
str
file_name
File name of the photo.

Type

str
post
The Post Object the photo belongs to.
Type

Post

20

Chapter 3. Models

Weverse

3.4 Video

class Weverse.models.Video (**kwargs)

A Video object that represents a Weverse Video that belongs to media or a post.

It is not suggested to create a Video manually, but rather through the following method: Weverse.objects.
create_video_objects

The information retrieved on a Video is directly from the Weverse API and altered to fit this class.
Videos do not have unique IDs.
X ==

Check if the Video URL and Post are the same.

x =y
Check if the Video objects are not equal.

str(x)
Returns the Video URL.

len(x)

Returns the length of the video in seconds.

Parameters
e video_url (int) — Direct URL to the video.
e thumbnail_url (str) — URL of the thumbnail.
e thumbnail_width (int) — Width of the thumbnail

* thumbnail_height (int) — Height of the thumbnail.

length (int) — Duration of the video in seconds.

video_url
Direct URL to the video.

Type
int

thumbnail_url
URL of the thumbnail.

Type

str
thumbnail_width
Width of the thumbnail

Type
int
thumbnail_height
Height of the thumbnail.

Type

int

3.4. Video 21

Weverse

playtime

Duration of the video in seconds.

Type

int

post

The Post Object the video belongs to.

Type
Optional[Post]

3.5 VideoStream

..autoclass:: Weverse.models.VideoStream

members

3.6 Artist

class Weverse.models.Artist (**kwargs)

An Artist object that represents a Weverse Artist that belongs in a community.

It is not suggested to create an Artist manually, but rather through the following method: Weverse.objects.

create_artist_objects

The information retrieved on an Artist is directly from the Weverse API and altered to fit this class.

X ==Yy

Checks if two Artists have the same ID.

X l=y

Checks if two Artists do not have the same ID.

str(x)
Returns the Artist’s primary name.

Parameters

e id (int) — The Artist ID.

e community_user_id (int) — Artist’s ID in the community.

* name (str) — The Primary Artist Name.

e list_name (1ist)— A list of names for the Artist.

* is_online (bool) — Whether the Artist is currently online

e profile_nick_name (str) — Artist nickname.

» profile_img_path (str) — Image URL for the Artist’s profile.
» is_birthday (bool) — Whether it is the Artist’s birthday.

* group_name (str) — The group name the Artist is associated with.

* max_comment_count (int) — The maximum amount of comments this Artist can post.

22

Chapter 3. Models

Weverse

» community_id (int) — The ID of the community this Artist object was selected from.
e is_enabled (bool) — If the Artist account is enabled.
» has_new_to_fans (bool) — If the Artist has a new post for fans.
* has_new_private_to_fans (bool) — If the Artist has a new private post for fans.
e to_fan_last_id (int) — The latest tofan post ID.
* to_fan_last_created_at — When the artist’s last tofan post was created.
* to_fan_last_expire_in — When the artist’s last tofan post expires.
* birthday_img_url (str) — A direct image url to the artist’s birthday image.
e community (Community)— The community the Artist is in.
* posts (list) — A list of posts the Artist has.
id
The Artist ID.
Type

int
community_user_id
Artist’s ID in the community.

Type
int

name
The Primary Artist Name.
Type

str

list_name
A list of names for the Artist.
Type
list
is_online
Whether the Artist is currently online

Type
bool

profile_nick_name

Artist nickname.

Type

str
profile_img_path
Image URL for the Artist’s profile.

Type
str

3.6. Artist 23

Weverse

is_birthday
Whether it is the Artist’s birthday.

Type
bool

group_name

The group name the Artist is associated with.

Type
str

max_comment_count

The maximum amount of comments this Artist can post.

Type

int

community_id

The ID of the community this Artist object was selected from.

Type
int

is_enabled
If the Artist account is enabled.

Type
bool

has_new_to_fans
If the Artist has a new post for fans.

Type
bool

has_new_private_to_fans
If the Artist has a new private post for fans.

Type
bool

to_fan_last_id
The latest tofan post ID.

Type
int

to_fan_last_created_at

When the artist’s last tofan post was created.
to_fan_last_expire_in

When the artist’s last tofan post expires.
birthday_img_url

A direct image url to the artist’s birthday image.

Type

str

24

Chapter 3. Models

Weverse

community

The community the Artist is in.

Type

Community

posts
A list of posts the Artist has.

Type
list

3.7 Comment

class Weverse.models.Comment (**kwargs)

A Comment object that represents a Weverse Comment that belongs to an Artist.

It is not suggested to create a Comment manually, but rather through the following method: Weverse.objects.
create_comment_objects

The information retrieved on a Comment is directly from the Weverse API and altered to fit this class.

X ==
Checks if two Comments have the same ID.
X l=y
Checks if two Comments do not have the same ID.
str(x)
Returns the comment’s body.
Parameters
e id (int) — The ID of the comment.
* body (str) — The comment content AKA the body of the message.
» comment_count (int) — Amount of comments inside of this comment (replies).
e like_count (int) — Amount of likes on the comment.
e has_my_like (bool) — Whether the client has liked the comment.
* is_blind (bool) - NOT SURE WHAT THIS IS
e post_id (int) — The Post ID that the comment was created under.
» created_at — The time the comment was created.
» updated_at — The time the comment was updated.
id
The ID of the comment.
Type
int

3.7. Comment 25

Weverse

body
The comment content AKA the body of the message.

Type

str
comment_count

Amount of comments inside of this comment (replies).

Type
int

like_count

Amount of likes on the comment.

Type

int
has_my_like
Whether the client has liked the comment.

Type
bool

is_blind
NOT SURE WHAT THIS IS

Type
bool

post_id

The Post ID that the comment was created under.

Type
int

created_at

The time the comment was created.

updated_at

The time the comment was updated.

post
The Post Object the comment belongs to.

Type

Post

3.8 Post

class Weverse.models.Post(**kwargs)

A Post object that represents a Weverse Post.

It is not suggested to create a Post manually, but rather through the following method: Weverse.objects.
create_post_objects

The information retrieved on a Post is directly from the Weverse API and altered to fit this class.

26 Chapter 3. Models

Weverse

X ==
Checks if two Post objects have the same ID.
x =y
Checks if two Post objects do not have the same ID.
str(x)
Returns the Post body message.
len(x)
Returns the amount of images (not videos) available.
Parameters
e id (int) — The ID of the post.
e community_tab_id (int) — The tab the post is under.
* type (str)— The type of Post.
* body (str)— Body Message on the Post.
e comment_count (int)— Current amount of comments on the Post
e like_count (int) — Current amount of likes on the Post
¢ max_comment_count (int) — Maximum amount of comments that can be on the Post
* has_my_like (bool) — If the client user has the post liked.
* has_my_bookmark (bool) — If the client user has the post bookmarked.
» created_at — When the post was created
* updated_at — When the post was last modified.
* is_locked (bool) — Whether the post is locked.
* is_blind (bool) — Whether the post is visible?? Unknown
» is_active (bool) — Whether the post is active.
* is_private (bool) — Whether the post is private.
» photos (List[Photo]) — A list of photos under the post.
» videos (List[Video]) — A list of videos under the post.
* is_hot_trending_post (bool) — If the post is trending.
e is_limit_comment (bool) — If the comments are limited.
» artist_comments (List[Comment]) — The Artist comments under the post.
» community_artist_id (int)— The Community Artist ID that made the post.
e artist_id (int) — The ID of the Artist that made the post.
id
The ID of the post.
Type
int

3.8. Post

27

Weverse

community_tab_id
The tab the post is under.
Type
int
type
The type of Post.

Type
str

body
Body Message on the Post.
Type

str

comment_count
Current amount of comments on the Post
Type
int
like_count
Current amount of likes on the Post
Type
int
max_comment_count
Maximum amount of comments that can be on the Post
Type
int
has_my_like
If the client user has the post liked.

Type
bool

has_my_bookmark

If the client user has the post bookmarked.

Type
bool

created_at

When the post was created

updated_at
When the post was last modified.

is_locked
Whether the post is locked.

Type
bool

28

Chapter 3. Models

Weverse

is_blind
Whether the post is visible?? Unknown

Type
bool

is_active
Whether the post is active.
Type
bool
is_private
Whether the post is private.

Type
bool

photos
A list of photos under the post.

Type
List[Photo]

videos
A list of videos under the post.
Type
List[Video]

is_hot_trending_post
If the post is trending.
Type
bool
is_limit_comment
If the comments are limited.

Type
bool

artist_comments

The Artist comments under the post.

Type
List[Comment]

community_artist_id

The Community Artist ID that made the post.
Type

int
artist_id
The ID of the Artist that made the post.

Type

int

3.8. Post 29

Weverse

artist
The Artist Object the post belongs to.

Type

Artist

3.9 Tab

class Weverse.models.Tab (tab_id=None, name=None)

A Post object that represents a Weverse Post.

It is not suggested to create a Post manually, but rather through the following method: WWeverse.objects.
create_post_objects

The information retrieved on a Post is directly from the Weverse API and altered to fit this class.

x —
Checks if two Tab objects have the same ID.
x =y
Check if the IDs of the Tab objects are not equal.

str(x)
Returns the Tab name.

Parameters
e tab_id ([Optional] int) - The ID of the Tab.
e name ([Optional] str)— The Tab name.
id
The ID of the Tab.

Type
int

name
The Tab name.

Type

str

3.10 Media

class Weverse.models.Media(**kwargs)
A Media object that represents a Weverse Media Post.

It is not suggested to create a Media object manually, but rather through the following method: Weverse.
objects.create_media_object

The information retrieved on Media is directly from the Weverse API and altered to fit this class.

X ==
Checks if two Media objects have the same ID.

30 Chapter 3. Models

Weverse

x =y

Checks if two Media objects do not have the same ID.

Parameters

id

id (int) — ID of the Media post.

community_id (int) — ID of the Community the media post was made in.
body (str) — The media content AKA the body of the message.

type (str) — The type of media post it is.

thumbnail_path (str) — The (url??) of the thumbnail.

title (str) — The title of the media post.

level — The level of access the media post is categorized under.
video_link (str) — The video link supplied under the media post.

youtube_id (str) — The youtube video ID.

ID of the Media post.
Type

int

community_id

ID of the Community the media post was made in.

Type

body

int

The media content AKA the body of the message.
Type

type

str

The type of media post it is.

Type

str

thumbnail_path
The (url??) of the thumbnail.

Type

title

str

The title of the media post.

Type

level

str

The level of access the media post is categorized under.

3.10. Media

31

Weverse

video_link

The video link supplied under the media post.

Type

str
youtube_id
The youtube video ID.
Type
str
photos
A list of photos under the media post.

Type
List[Photo]

videos
A list of videos under the media post.

Type
List[Video]

3.11 Announcement

class Weverse.models.Announcement (**kwargs)

An Announcement object that represents a Weverse Notice for a Community.

It is not suggested to create an Announcement manually, but rather through the following method: Weverse.

objects.create_announcement_objects

The information retrieved on a Post is directly from the Weverse API and altered to fit this class.

X ==Y

Checks if two Announcement objects have the same ID.

X l=y

Checks if two Announcement objects do not have the same ID.

str(x)

Returns the Announcement content.

Parameters

* id (int) — The ID of the post.

o communityId (int) — The Community ID.
e title (str) — The title of the announcement notice.

» content (str)— The HTML body of the page notice.

* createdAt (str)— Timestamp with the date of when the announcement was created.

» exposedAt (str) — Timestamp with the date of when the announcement was released.

» categoryld (int) — Category that the announcement belongs to (used for paginating or

quick endpoint access)

32

Chapter 3. Models

Weverse

» fcOnly (bool) — If only premium members have access to the announcement.
id
The ID of the post.

Type
int

community_id

The Community ID.
Type
int
title
The title of the announcement notice.
Type
str

html_content
The HTML body of the page notice.
Type

str

created_at

Timestamp with the date of when the announcement was created.

Type

str
exposed_at
Timestamp with the date of when the announcement was released.

Type
str

category_id
Category that the announcement belongs to (used for paginating or quick endpoint access)

Type
int
fc_only
If only premium members have access to the announcement.

Type
bool

image_url

An image url if one is present.

Type
Optional[str]

content

Body Content without the HTML tags.

Type
str

3.11. Announcement 33

Weverse

34 Chapter 3. Models

CHAPTER
FOUR

MODEL CREATION

Weverse.objects.create_announcement_object (announcement_info: dict) — Announcement

Creates and returns an announcement object

Parameters
announcement_info — Announcement information from endpoint.

Returns
Announcement

Weverse.objects.create_artist_objects(current_artists: list) — list

Creates artist objects based on a list of information sent in and returns the objects.

Parameters
current_artists — Artist information received from endpoint.

Returns
List[Artist]

Weverse.objects.create_comment_objects (current_comments: list) — list

Creates & Returns comment objects based on a list of comments

Parameters
current_comments — comment information from endpoint.

Returns
List[Comment]

Weverse.objects.create_community_objects (current_communities: list, already_existing:
Optional[Dict[int, Community]| = None) — dict

Creates community objects based on a list of information sent in and returns the objects.
Parameters

e current_communities — A list of communities from the endpoint being followed. Com-
munity information received from endpoint.

* already_existing — List[Community] Already existing Communities that should not be
replaced.

Returns
dict{community id: Community}

WWeverse.objects.create_media_object (media_info: dict, ignore_photos=False, ignore_videos=False) —
Media

Creates and returns a media object

Parameters

35

Weverse

» media_info — media information from endpoint.

ignore_photos — Whether to ignore the photos that belong in the media object. (Other
methods can create it themselves.)

ignore_videos — Whether to ignore the videos that belong in the media object. (Other
methods can create it themselves.)

Returns
Media
Weverse.objects.create_notification_objects(current_notifications: list) — list
Creates notification objects based on a list of information sent in and returns the objects.

Parameters
current_notifications — Notification information received from endpoint.

Returns
List[Notification]
Weverse.objects.create_photo_objects(current_photos: list) — list
Creates & Returns photo objects based on a list of photos

Parameters
current_photos — photo information from endpoint.

Returns
List[Photo]
Weverse.objects.create_post_objects(current_posts: list, community: Community, new=False) — list
Creates post objects based on a list of posts sent in and the community and returns the objects.

Parameters

* current_posts — Post information received from endpoint.
e community — Community that the post belongs in.
* new — bool Whether or not the post is new.
Returns
List[Post]
Weverse.objects.create_tab_objects (current_tabs: list) — list
Creates tab objects based on a list of information sent in and returns the objects.

Parameters
current_tabs — Tab information received from endpoint.

Returns
List[7ab]
Weverse.objects.create_video_objects (current_videos: list, community_id=None) — list
Creates & Returns video objects based on a list of videos.

Parameters

» current_videos — Video information from api endpoint.
e community_id — Community ID

Returns
List[Video]

36 Chapter 4. Model Creation

Weverse

Weverse.objects.iterate_community_media_categories (all_media_categories: dict) —
[List[Weverse.models.media.Media], List[dict]]

Iterates through community media categories, creates Media posts and returns a list of them.

Parameters
all_media_categories — A dict containing media posts that are filtered by category.

Returns
[List[Media], List[dict]] A list of Video Media objects and a list of dicts containing photo media
objects to later make own calls on to retrieve photos.

37

Weverse

38 Chapter 4. Model Creation

CHAPTER
FIVE

5.1 Invalid Token

exception Weverse.InvalidToken
An Exception Raised When an Invalid Token was Supplied.

5.2 Page Not Found

exception Weverse.PageNotFound (url)
An Exception Raised When a link was not found.

Parameters
url (str) — The link that was not found.

5.3 Being Rate Limited

exception Weverse.BeingRateLimited

An Exception Raised When Weverse Is Being Rate-Limited.

EXCEPTIONS

39

Weverse

40 Chapter 5. Exceptions

CHAPTER
SIX

GET ACCOUNT TOKEN

Your account token is needed (Will need to be updated about every 6 months iirc).

Note that it is now possible to log-in with a username and password to prevent manual updates.
In order to get your account token, go to https://www.weverse.io/ and Inspect Element (F12).
Then go to the Network tab and filter by XHR.

Then refresh your page (F5) and look for info or me under XHR.

Under Headers, scroll to the bottom and view the request headers.

You want to copy everything past authorization: Bearer.

For example, you may see (This is just an example):

authorization: Bearer ABCDEFGHIJKLMNOPQRSTUVWXYZ

Then ABCDEFGHI JKLMNOPQRSTUVWXYZ would be your auth token for Weverse.

It is suggested to have the auth token as an environment variable.

IMPORTANT NOTE: Not all korean key-phrases may be logged. Scroll to the bottom of the Weverse page when you
are logged in and click “English” to set the account language to English.

41

https://www.weverse.io/

Weverse

42 Chapter 6. Get Account Token

CHAPTER
SEVEN

ASYNCHRONOUS USAGE

Asynchronous

import asyncio

import aiohttp

from Weverse.error import InvalidToken

from Weverse.weverseasync import WeverseClientAsync

THERE IS A MORE DETAILED EXAMPLE IN THE EXAMPLES FOLDER
https://github.com/MujyKun/Weverse/blob/main/examples/asynchronous.py

token = "fake_token" # REQUIRED
THE EXAMPLE IN THE EXAMPLES FOLDER WILL SHOW YOU HOW TO LOGIN WITH A USERNAME AND._
—PASSWORD AND SET UP HOOKS.

It is advised to pass in your own web session as it is not closed in Weverse
web_session = aiohttp.ClientSession() # A session is created by default
weverse_client = WeverseClientAsync(authorization=token, verbose=True, loop=asyncio.get_
—event_loop(),
web_session=web_session)

try:

creates all the cache that is specified. If the create parameters are set to True,.
—they will take a very long time.

await weverse_client.start(create_old_posts=True, create_media=True)
except InvalidToken:

print("Invalid Token")

43

Weverse

44 Chapter 7. Asynchronous Usage

CHAPTER
EIGHT

SYNCHRONOUS USAGE

Synchronous

import requests

from Weverse.weversesync import WeverseClientSync
from Weverse.error import InvalidToken

THERE IS A MORE DETAILED EXAMPLE IN THE EXAMPLES FOLDER
https://github.com/MujyKun/Weverse/blob/main/examples/synchronous.py

token = "fake_token" # REQUIRED
THE EXAMPLE IN THE EXAMPLES FOLDER WILL SHOW YOU HOW TO LOGIN WITH A USERNAME AND.
—PASSWORD AND SET UP HOOKS.

It is advised to pass in your own web session as it is not closed in Weverse
web_session = requests.Session() # A session is created by default
weverse_client = WeverseClientSync(authorization=token, verbose=True)
try:

creates all the cache that is specified. If the create parameters are set to True,.
—they will take a very long time.

weverse_client.start(create_old_posts=True, create_media=True)
except InvalidToken:

print("Invalid Token")

45

Weverse

46 Chapter 8. Synchronous Usage

CHAPTER
NINE

INDICES AND TABLES

* genindex
* modindex

¢ search

47

Weverse

48 Chapter 9. Indices and tables

PYTHON MODULE INDEX

w

Weverse.objects, 35

49

Weverse

50 Python Module Index

A

all_announcements (Weverse.WeverseClient attribute),
2
all_artists (Weverse.WeverseClient attribute), 2
all_comments (Weverse. WeverseClient attribute), 2
all_communities (Weverse.WeverseClient attribute), 2
all_media (Weverse.WeverseClient attribute), 2
all_notifications (Weverse.WeverseClient attribute),
2
all_photos (Weverse.WeverseClient attribute), 2
all_posts (Weverse.WeverseClient attribute), 2
all_tabs (Weverse.WeverseClient attribute), 2
all_videos (Weverse.WeverseClient attribute), 2
Announcement (class in Weverse.models), 32
Artist (class in Weverse.models), 22
artist (Weverse.models.Post attribute), 29
artist_comments (Weverse.models.Post attribute), 29
artist_id (Weverse.models.Notification attribute), 18
artist_id (Weverse.models.Post attribute), 29
artists (Weverse.models.Community attribute), 16

B

Banner (Weverse.models. Community attribute), 16

BeingRatelLimited, 39

birthday_img_url (Weverse.models.Artist attribute),
24

body (Weverse.models. Comment attribute), 25

body (Weverse.models.Media attribute), 31

body (Weverse.models. Post attribute), 28

bold_element (Weverse.models.Notification attribute),
18

C

cache_loaded (Weverse. WeverseClient attribute), 1
category_id (Weverse.models.Announcement at-
tribute), 33

check_new_user_notifications() (Wev-
erse.WeverseClientAsync method), 10
check_new_user_notifications() (Wev-

erse.WeverseClientSync method), 7
check_status() (Weverse.WeverseClient method), 3

INDEX

check_token_works()
method), 10

check_token_works ()
method), 7

Comment (class in Weverse.models), 25

comment_count (Weverse.models.Comment attribute),
26

comment_count (Weverse.models.Post attribute), 28

Community (class in Weverse.models), 15

community (Weverse.models.Artist attribute), 24

community_artist_id (Weverse.models.Post attribute),
29

community_id (Weverse.models.Announcement at-
tribute), 33

community_id (Weverse.models.Artist attribute), 24

community_id (Weverse.models.Media attribute), 31

community_id (Weverse.models.Notification attribute),
18

community_name
tribute), 18

community_tab_id (Weverse.models.Post attribute), 277

community_user_id (Weverse.models.Artist attribute),
23

content (Weverse.models.Announcement attribute), 33

content_index (Weverse.models.Photo attribute), 20

contents_id (Weverse.models.Notification attribute), 18

contents_type (Weverse.models.Notification attribute),
18

cookies (Weverse.WeverseClientAsync property), 10

create_announcement_object() (in module Wev-
erse.objects), 35

(Weverse.WeverseClientAsync

(Weverse.WeverseClientSync

(Weverse.models.Notification at-

create_artist_objects() (in module Wev-
erse.objects), 35
create_comment_objects() (in module Wev-

erse.objects), 35
create_communities() (Weverse.WeverseClientAsync

method), 10
create_communities() (Weverse.WeverseClientSync
method), 7
create_community_artists_and_tabs() (Wev-
erse.WeverseClientAsync method), 10
create_community_artists_and_tabs() (Wev-

51

Weverse

erse.WeverseClientSync method), 7
create_community_objects() (in module
erse.objects), 35

Wev-

create_media() (Weverse.WeverseClientAsync
method), 10

create_media() (Weverse.WeverseClientSync method),
7

create_media_object () (in module Weverse.objects),
35

create_notification_objects() (in module Wev-
erse.objects), 36

create_photo_objects()
erse.objects), 36

create_post() (Weverse.WeverseClientAsync method),
10

create_post() (Weverse.WeverseClientSync method), 7

create_post_objects() (in module Weverse.objects),
36

create_posts()
method), 10

create_posts() (Weverse.WeverseClientSync method),
7

create_tab_objects() (in module Weverse.objects),
36

create_video_objects()
erse.objects), 36

created_at (Weverse.models.Announcement attribute),
33

created_at (Weverse.models.Comment attribute), 26

created_at (Weverse.models.Post attribute), 28

D

description (Weverse.models. Community attribute), 16

(in module Wev-

(Weverse.WeverseClientAsync

(in module Wev-

determine_notification_type() (Wev-
erse.WeverseClient static method), 3
download_video_stream() (Wev-

erse.WeverseClientAsync method), 11

E

exposed_at (Weverse.models.Announcement attribute),
33

F

fc_member (Weverse.models. Community attribute), 16
fc_only (Weverse.models.Announcement attribute), 33
fetch_announcement () (Weverse.WeverseClientAsync

method), 11

fetch_announcement () (Weverse.WeverseClientSync
method), 8

fetch_artist_comments() (Wev-
erse.WeverseClientAsync method), 11

fetch_artist_comments() (Wev-

erse.WeverseClientSync method), 8

fetch_comment_body () (Weverse.WeverseClientAsync
method), 11

fetch_comment_body() (Weverse.WeverseClientSync
method), 8

fetch_media() (Weverse.WeverseClientAsync method),
11

fetch_media() (Weverse.WeverseClientSync method), 8

file_name (Weverse.models.Photo attribute), 20

follow_all_communities()
erse.WeverseClientAsync method), 12

follow_community () (Weverse.WeverseClientAsync
method), 12

full_name (Weverse.models. Community attribute), 16

G

get_all_community_ids()
erse.WeverseClientAsync method), 12
get_announcement_by_id() (Weverse.WeverseClient

(Wev-

(Wev-

method), 3

get_artist_by_id() (Weverse.WeverseClient method),
3

get_comment_by_id() (Weverse.WeverseClient
method), 3

get_community_by_id() (Weverse. WeverseClient
method), 3

get_cookies() (Weverse.WeverseClientAsync method),
12

get_media_by_id() (Weverse.WeverseClient method),
3

get_new_notifications() (Weverse.WeverseClient
method), 4

get_notification_by_id() (Weverse.WeverseClient
method), 4

get_photo_by_id() (Weverse.WeverseClient method),
4

get_post_by_id() (Weverse.WeverseClient method), 4
get_tab_by_id() (Weverse.WeverseClient method), 4

get_user_notifications() (Wev-
erse.WeverseClientAsync method), 12
get_user_notifications() (Wev-

erse.WeverseClientSync method), 8
get_video_by_url () (Weverse.WeverseClient method),
4

group_name (Weverse.models.Artist attribute), 24

H

has_my_bookmark (Weverse.models.Post attribute), 28

has_my_like (Weverse.models.Comment attribute), 26

has_my_like (Weverse.models.Post attribute), 28

has_new_private_to_fans (Weverse.models.Artist at-
tribute), 24

has_new_to_fans (Weverse.models.Artist attribute), 24

home_banner (Weverse.models. Community attribute), 16

52

Index

Weverse

html_content (Weverse.models.Announcement at-
tribute), 33

icon (Weverse.models.Community attribute), 16

icon_image_url (Weverse.models.Notification at-

tribute), 18

id (Weverse.models.Announcement attribute), 33

id (Weverse.models.Artist attribute), 23

id (Weverse.models.Comment attribute), 25

id (Weverse.models.Community attribute), 15

id (Weverse.models.Media attribute), 31

id (Weverse.models.Notification attribute), 17

id (Weverse.models.Photo attribute), 19

id (Weverse.models.Post attribute), 27

id (Weverse.models.Tab attribute), 30

image_url (Weverse.models.Announcement attribute),
33

InvalidToken, 39

is_active (Weverse.models.Post attribute), 29

is_birthday (Weverse.models.Artist attribute), 23

is_blind (Weverse.models.Comment attribute), 26

is_blind (Weverse.models.Post attribute), 28

is_enabled (Weverse.models.Artist attribute), 24

is_hot_trending_post (Weverse.models.Post
tribute), 29

is_limit_comment (Weverse.models.Post attribute), 29

is_locked (Weverse.models.Post attribute), 28

is_membership_content (Weverse.models.Notification
attribute), 18

is_online (Weverse.models.Artist attribute), 23

is_private (Weverse.models.Post attribute), 29

is_web_only (Weverse.models.Notification attribute), 18

iterate_community_media_categories() (in mod-
ule Weverse.objects), 36

at-

L

level (Weverse.models.Media attribute), 31
like_count (Weverse.models.Comment attribute), 26
like_count (Weverse.models.Post attribute), 28
list_name (Weverse.models.Artist attribute), 23
loop (Weverse. WeverseClientAsync attribute), 9

M

max_comment_count (Weverse.models.Artist attribute),
24

max_comment_count (Weverse.models.Post attribute),
28

Media (class in Weverse.models), 30

media_id (Weverse.models.Photo attribute), 19

member_count (Weverse.models.Community attribute),
16

message (Weverse.models.Notification attribute), 17

module

Weverse.objects, 35

N

name (Weverse.models.Artist attribute), 23

name (Weverse.models. Community attribute), 15

name (Weverse.models.Tab attribute), 30

Notification (class in Weverse.models), 17
notified_at (Weverse.models.Notification attribute), 18

O
original_img_height
tribute), 20
original_img_url (Weverse.models.Photo attribute),
20
original_img_width
tribute), 20

(Weverse.models.Photo at-

(Weverse.models.Photo at-

P

PageNotFound, 39

Photo (class in Weverse.models), 19

photos (Weverse.models.Media attribute), 32

photos (Weverse.models.Post attribute), 29

platform (Weverse.models.Notification attribute), 19

playtime (Weverse.models.Video attribute), 21

Post (class in Weverse.models), 26

post (Weverse.models. Comment attribute), 26

post (Weverse.models.Photo attribute), 20

post (Weverse.models.Video attribute), 22

post_id (Weverse.models.Comment attribute), 26

posts (Weverse.models.Artist attribute), 25

process_community_artists_and_tabs()
erse.WeverseClient static method), 4

profile_img_path (Weverse.models.Artist attribute),
23

profile_nick name (Weverse.models.Artist attribute),
23

public_weverse_key (Weverse.WeverseClient prop-
erty), 5

(Wev-

R

run_blocking_code()
method), 12

(Weverse.WeverseClientAsync

S

show_member_count (Weverse.models.Community at-
tribute), 16

start() (Weverse.WeverseClientAsync method), 12

start() (Weverse. WeverseClientSync method), 8

stop () (Weverse.WeverseClient method), 5

T

Tab (class in Weverse.models), 30
tabs (Weverse.models. Community attribute), 16

Index

53

Weverse

thumbnail_height (Weverse.models.Video attribute),
21

thumbnail_image_url (Weverse.models.Notification
attribute), 18

thumbnail_img_height (Weverse.models.Photo at-
tribute), 20

thumbnail_img_url (Weverse.models.Photo attribute),
20

thumbnail _img_width (Weverse.models.Photo at-
tribute), 20

thumbnail_path (Weverse.models.Media attribute), 31

thumbnail_url (Weverse.models.Video attribute), 21

thumbnail_width (Weverse.models.Video attribute), 21

title (Weverse.models.Announcement attribute), 33

title (Weverse.models.Media attribute), 31

to_fan_last_created_at (Weverse.models.Artist at-
tribute), 24

to_fan_last_expire_in (Weverse.models.Artist
attribute), 24

to_fan_last_id (Weverse.models.Artist attribute), 24

translate() (Weverse.WeverseClientAsync method), 13

translate() (Weverse.WeverseClientSync method), 9

type (Weverse.models.Media attribute), 31

type (Weverse.models.Post attribute), 28

U

update_cache_from_notification() (Wev-
erse.WeverseClientAsync method), 13
update_cache_from_notification() (Wev-

erse.WeverseClientSync method), 9
updated_at (Weverse.models.Comment attribute), 26
updated_at (Weverse.models.Post attribute), 28
user_endpoint (Weverse. WeverseClient attribute), 1
user_notifications (Weverse.WeverseClient at-

tribute), 1

Vv

verbose (Weverse. WeverseClient attribute), 1
Video (class in Weverse.models), 21

video_link (Weverse.models.Media attribute), 31
video_url (Weverse.models.Video attribute), 21
videos (Weverse.models.Media attribute), 32
videos (Weverse.models.Post attribute), 29

W

web_session (Weverse. WeverseClient attribute), 1
Weverse.objects

module, 35
WeverseClient (class in Weverse), 1
WeverseClientAsync (class in Weverse), 9
WeverseClientSync (class in Weverse), 7

Y

youtube_id (Weverse.models.Media attribute), 32

54

Index

	WeverseClient
	Clients
	WeverseClientSync
	WeverseClientAsync

	Models
	Community
	Notification
	Photo
	Video
	VideoStream
	Artist
	Comment
	Post
	Tab
	Media
	Announcement

	Model Creation
	Exceptions
	Invalid Token
	Page Not Found
	Being Rate Limited

	Get Account Token
	Asynchronous Usage
	Synchronous Usage
	Indices and tables
	Python Module Index
	Index

